Estimation of distribution algorithms and minimum relative entropy

نویسنده

  • Robin Höns
چکیده

In the field of optimization using probabilistic models of the search space, this thesis identifies and elaborates several advancements in which the principles of maximum entropy and minimum relative entropy from information theory are used to estimate a probability distribution. The probability distribution within the search space is represented by a graphical model (factorization, Bayesian network or junction tree). An estimation of distribution algorithm (EDA) is an evolutionary optimization algorithm which uses a graphical model to sample a population within the search space and then estimates a new graphical model from the selected individuals of the population. • So far, the Factorized Distribution Algorithm (FDA) builds a factorization or Bayesian network from a given additive structure of the objective function to be optimized using a greedy algorithm which only considers a subset of the variable dependencies. Important connections can be lost by this method. This thesis presents a heuristic subfunction merge algorithm which is able to consider all dependencies between the variables (as long as the marginal distributions of the model do not become too large). On a 2-D grid structure, this algorithm builds a pentavariate factorization which allows to solve the deceptive grid benchmark problem with a much smaller population size than the conventional factorization. Especially for small population sizes, calculating large marginal distributions from smaller ones using Maximum Entropy and iterative proportional fitting leads to a further improvement. • The second topic is the generalization of graphical models to loopy structures. Using the Bethe-Kikuchi approximation, the loopy graphical model (region graph) can learn the Boltzmann distribution of an objective function by a generalized belief propagation algorithm (GBP). It minimizes the free energy, a notion adopted from statistical physics which is equivalent to the relative entropy to the Boltzmann distribution. Previous attempts to combine the Kikuchi approximation with EDA have relied on an expensive Gibbs sampling procedure for generating a population from this loopy probabilistic model. In this thesis a combination with a factorization is presented which allows more efficient sampling. The free energy is generalized to incorporate the inverse temperature β. The factorization building algorithm mentioned above can be employed here, too.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

E-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function

‎Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...

متن کامل

The Factorized Distribution Algorithm and the Minimum Relative Entropy Principle

Estimation of Distribution Algorithms (EDA) have been proposed as an extension of genetic algorithms. In this paper the major design issues of EDA’s are discussed using an interdisciplinary framework, the minimum relative entropy (MinRel) approximation. We assume that the function to be optimized is additively decomposed (ADF). The interaction graph GADF of the ADF is used to create exact or ap...

متن کامل

Estimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data

This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...

متن کامل

Classical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data

Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...

متن کامل

Estimation of Lower Bounded Scale Parameter of Rescaled F-distribution under Entropy Loss Function

We consider the problem of estimating the scale parameter &beta of a rescaled F-distribution when &beta has a lower bounded constraint of the form &beta&gea, under the entropy loss function. An admissible minimax estimator of the scale parameter &beta, which is the pointwise limit of a sequence of Bayes estimators, is given. Also in the class of truncated linear estimators, the admissible estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005